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Abstract

Nearly every country is now combating the 2019 novel coronavirus (COVID-19). It

has been hypothesized that if COVID-19 exhibits seasonality, changing temperatures in

the coming months will shift transmission patterns around the world. Such projections,

however, require an estimate of the relationship between COVID-19 and temperature

at a global scale, and one that isolates the role of temperature from confounding fac-

tors, such as public health capacity. This paper provides the first plausibly causal

estimates of the relationship between COVID-19 transmission and local temperature

using a global sample comprising of 166,686 confirmed new COVID-19 cases from 134

countries from January 22, 2020 to March 15, 2020. We find robust statistical evi-

dence that a 1◦C increase in local temperature reduces transmission by 13% [-21%,

-4%, 95%CI]. In contrast, we do not find that specific humidity or precipitation influ-

ence transmission. Our statistical approach separates effects of climate variation on

COVID-19 transmission from other potentially correlated factors, such as differences in

public health responses across countries and heterogeneous population densities. Using

constructions of expected seasonal temperatures, we project that changing tempera-

tures between March 2020 and July 2020 will cause COVID-19 transmission to fall by

43% on average for Northern Hemisphere countries and to rise by 71% on average for

Southern Hemisphere countries. However, these patterns reverse as the boreal winter

approaches, with seasonal temperatures in January 2021 increasing average COVID-19

transmission by 59% relative to March 2020 in northern countries and lowering trans-

mission by 2% in southern countries. These findings suggest that Southern Hemisphere

countries should expect greater transmission in the coming months. Moreover, North-

ern Hemisphere countries face a crucial window of opportunity: if contagion-containing

policy interventions can dramatically reduce COVID-19 cases with the aid of the ap-

proaching warmer months, it may be possible to avoid a second wave of COVID-19

next winter.
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Introduction

In late 2019, a novel virus strain from the family Coronaviridae, referred to as 2019-nCoV (or

SARS-CoV-2) began spreading throughout China.1 Central among 2019-nCoV concerns are

its high transmissivity, potentially severe flu-like symptoms, and high case fatality rates.2

In the ensuing months, the virus has transmitted globally, prompting the World Health

Organization to declare a pandemic on March 11, 2020. At the time of this writing, cases

of COVID-19, the disease caused by 2019-nCoV, have been detected in 134 countries (Fig.

1A).

Much remains unknown about COVID-19. An important question concerns the condi-

tions that affect transmission. Previous studies show that transmission of H3N2, 2009 H1N1,

and other strains of influenza are sensitive to environmental conditions, and in particular

decline with higher temperatures and humidity.3–7 If COVID-19 exhibits similar climatic

sensitivities, it is possible that warmer temperatures during the boreal summer months may

lower transmission rates for Northern Hemisphere countries while cooler temperatures in-

crease transmission rates for Southern Hemisphere countries over the same period. Such

climatic determinants of transmission present opportunities and challenges for policymakers

and scientists, as seasonal changes both open windows of opportunity to constrain the spread

of the virus, while also accelerating rates of transmission in locations where stringent public

health measures have not yet been put in place.

Several research efforts are underway to understand the temperature-COVID-19 trans-

mission pattern. However, to date, results from existing studies compare temperature and

COVID-19 cases across countries or across regions within individual countries. These empiri-

cal frameworks conflate location-specific characteristics – such as testing capacity, population

density, and health services – with temperature variation.8–10 Because temperature is corre-

lated with many (often unobservable) confounding factors, such cross-sectional comparisons

may not have a causal interpretation.11–13 For example, countries that are cooler on av-

erage also tend to have higher income per capita14 which may affect the number of new

COVID-19 cases by enabling more public health measures such as testing and hospitaliza-

tions. Moreover, to our knowledge, prior empirical estimates of the COVID-19-temperature

relationship only examine cases within China, which may not be suitable for understand-

ing the temperature-COVID-19 relationship globally. Additionally, several studies compare

temperature and COVID-19 transmission across countries, but make no attempt to esti-

mate a statistical relationship between temperature and COVID-19 cases15,16 or to generate

empirically-based seasonal projections.

In this paper we statistically estimate a plausibly causal, global relationship between
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temperature and COVID-19 transmission and use these empirical estimates to generate high-

resolution seasonal projections of new COVID-19 cases under the changing global climate

over the next 11 months. To achieve this, we collect daily temperature, precipitation and

specific humidity for every 0.25◦ latitude by 0.25◦ longitude pixel of the planet generated by a

state-of-the-art climate reanalysis model in near real-time. We aggregate pixel-level weather

variables to the country level using population weights and link to daily country-level re-

ports of new COVID-19 cases across the world for the period between January 22, 2020

to March 15, 2020 (see Data section of Methods). This country-by-day global longitudinal

dataset enables us to statistically estimate a global function between temperature and new

cases of COVID-19 per 1 million people. In particular, we leverage the large existing climate

econometrics literature13 to employ a statistical model containing a suite of semi-parametric

controls designed to isolate the effect of temperature from potentially confounding factors

that also influence new COVID-19 cases. These controls account for: time-invariant differ-

ences in population characteristics across countries, such as differential population densities

and healthcare systems; temporal shocks that influence the pattern of global COVID-19

events, such as the WHO pandemic designation; and seasonal trends that vary latitudinally

across the globe. Together, these controls aim to isolate idiosyncratic daily variations in tem-

peratures experienced by the same population; we show that results are consistent across a

range of alternative statistical models, each of which varies the stringency of these controls

(see Statistical Model section of Methods).

Results

We find robust statistical evidence that higher temperatures lower the number new cases

of COVID-19 in a given population. In our main statistical specification, we find that a

1◦C increase in local temperature reduces new COVID-19 cases per 1 million people by

13%, with a 95% confidence interval of [-21%, -4%] (Fig. 1B and col. 1 of Table S1). This

result is robust to controlling for precipitation and specific humidity, neither of which exhibit

statistically significant effects (although point estimates on humidity are negative, consistent

with prior evidence for influenza5) (Fig. 1B and col. 2 of Table S1). Our findings are also

robust to inclusion of a range of semi-parametric controls, including controlling for seasonal

patterns of temperature that are common across countries within particular latitude bands of

varying width (Fig. 1B and cols. 4-7 of Table S1). In our benchmark model (col. 5 of Table

S1), we control for separate nonlinear trends for countries that fall within each 25◦ latitude

band across the globe. This model accounts for spatially-varying trends in seasonal factors

that may correlate both with COVID-19 cases and with temperature. Decreasing the width
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of these latitudinal bands, and thus imposing more restrictive controls on spatial patterns

of seasonality, yields a coefficient statistically indistinguishable from that in our benchmark

model (col. 7 of Table S1). These estimates are proportional, implying that the level change

in the COVID-19 case rate per unit change in temperature will be higher in populations

where the epidemic has already taken a strong hold. In contrast, lower temperatures will

lead to far fewer individuals infected in a population with a low overall case rate. However,

we detect no evidence of nonlinearity in this proportional response (Fig. 1B and col. 3 of

Table S1); a 1◦C increase in local temperature increases the case rate by 13% on average

whether a country is presently relatively cold (e.g. South Korea), or relatively warm (e.g.

Australia).

These estimates relate new COVID-19 cases to plausibly random daily variation in local

temperatures. Thus, they reflect multiple possible channels through which changes in tem-

perature can influence new cases. First, temperature is likely to have a biological effect on

the virus 2019-nCoV itself, as has been documented in lab experiments for influenza.3 Sec-

ond, temperature may change people’s behavior, and thus change the number of new cases

caused by a single infected individual. For example, warming temperatures encourage out-

door activities,17 possibly changing the intensity of social interaction. Finally, temperature

has a direct effect on other causes of morbidity and mortality, with particularly large impacts

on elderly populations.18–21 Thus, temperature may increase susceptibility to COVID-19 by

lowering overall health.

We combine the estimated temperature-COVID-19 relationship shown in Fig. 1B with

expected seasonal temperatures over the next 11 months to project the effect that upcoming

seasonal variation in temperature is likely to have on new cases of COVID-19 at high resolu-

tion across the globe. Fig. 2A shows, at a 0.25◦ latitude by 0.25◦ longitude resolution, the es-

timated percentage change in new COVID-19 cases around the globe caused by temperature

changes between March 2020 and July 2020 (see Fig. S3 for 95% confidence interval). Fig.

2B collapses these projections to the country-level, plotting projected percentage changes for

each country (x-axis) by latitude of each country’s area-weighted centroid (y-axis). The 20

countries with the highest current rate of COVID-19 cases per 1 million people are indicated

with red dots; notably, the vast majority of the countries with high rates of COVID-19 cases

lie above the equator, where temperatures are currently suppressed in the boreal winter.

The projections shown in Figs. 2A and 2B reveal a clear hemisphere-dependent pattern in

near-future temperature-driven COVID-19 transmission. By July 2020, we project, all things

equal, that higher seasonal temperatures will drive COVID-19 transmission rates down by

43% relative to March 2020 on average across Northern Hemisphere countries. During that

same period, transmission rates for Southern Hemisphere countries will rise by 71% on aver-
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age. However, as Figs. 2C and 2D show, this relief for northern countries during the boreal

summer is temporary. Expected cooling by January 2021 implies that average COVID-19

transmission is 59% higher than in March 2020 in northern countries. Over this same period,

warming in southern countries warming lowers transmission by 2%.

Fig. 3 demonstrates the temporal trajectory of these seasonal shifts in the global pat-

tern of COVID-19. Each line represents a time series of seasonal projections of new cases

of COVID-19 per 1 million individuals for each country and every month between April

2020 and January 2021; Northern Hemisphere countries are in orange and Southern hemi-

sphere countries are in blue, with solid lines indicating hemisphere average effects. While

temperatures in coming months are likely to depress new COVID-19 cases in northern coun-

tries, these gains are counterbalanced by large increases in risk for southern countries and a

dramatic spatial reversal in the case burden by fall of 2020.

Discussion

Using a nearly global sample of confirmed COVID-19 cases throughout the course of the

recent pandemic, we find that the number of new cases per 1 million individuals responds

negatively to rising temperature. This result implies that upcoming seasonal temperature

changes will differentially affect COVID-19 transmission across the world. Projecting our

estimates onto the next 11 months of expected seasonal temperatures, we predict that coun-

tries that will experience colder conditions - primarily in the Southern Hemisphere - are likely

to see an increase in COVID-19 transmission during the boreal summer months followed by

a drop in transmission during the boreal winter months. Conversely, countries expecting to

get warmer during boreal summer months, most of which lie above the equator, will first ex-

perience lower COVID-19 transmission before a return to higher rates of transmission. Some

important exceptions to this pattern exist, such as in southern India, where an upcoming

monsoonal period is likely to lower temperatures from their current levels and raise the rates

of transmission, all else equal.

While there is an asymmetric response between Southern and Northern hemisphere coun-

tries, there is a clear need for large-scale public health interventions across all countries. For

southern countries, which have generally experienced fewer COVID-19 cases to date (Fig.

1A), public health policy must be ramped up in response to rising COVID-19 transmission

as temperatures cool. Northern countries face a crucial window of opportunity to eliminate

COVID-19 from their populations. In the coming warmer months, rising temperatures are

likely to lower overall transmission, making large-scale public health interventions that limit

contact amongst individuals, such as shelter-in-place policies and school closings, more effec-
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tive at achieving and maintaining low overall case rates. However, if such measures are not

taken and moderate baseline levels of transmission persist through the summer, cooler fall

and winter months could imply a substantial resurgence of new cases (Fig. 2 and 3). Getting

the most from these policies during this summer period is critical if northern countries want

to eliminate COVID-19, rather than experience a second, possibly stronger, second wave of

the virus when temperatures fall during the winter of 2021. History hints at the importance

of taking advantage of this window of opportunity: the second wave of the 1918 Spanish

influenza pandemic had much higher mortality rates than the first.22,23

Although we know of no completed laboratory studies of the temperature-COVID-19

transmission relationship to date, we view our approach as complementary to such future

results. While laboratory studies isolate the biology of virus transmission, our statistical

approach using observed COVID-19 cases captures those channels as well as any behavioral

adjustments individuals make in response to short-term fluctuations in temperature, such

as decisions to go outside, to exercise, to attend social gatherings, and many other possible

activities and health investments. As public health officials grapple with the costs and

benefits of a range of possible responses to the current pandemic, quantifying the influence

of both channels is essential to building appropriate policies.

Our study has a number of important limitations. First, as is true in any empirical study

of disease, we can only observe cases that are confirmed. It is very likely that confirmed cases

of COVID-19 fall far below actual rates of infection,24 thus suggesting that our findings may

represent an under-estimate of the magnitude of the link between infection and local climatic

conditions. Relatedly, countries around the world have invested very differently in testing

capacity, making such under-reporting heterogeneous across space and time. However, our

empirical model is designed to purge estimates of the influence of such differential testing

by using a rich set of semi-parametric controls, including fixed effects that vary across both

space and time. Second, the estimates we show represent average treatment effects across

countries and time periods in our sample. It is possible that the effect of temperature on

case rates varies across different policy regimes, such as social distancing and the closure

of public transportation systems. While such heterogeneity is an important area for future

research, it is important to note that our model, by construction, captures many sources

of such heterogeneity through its log-linear form. While we find that temperature has a

consistent -13% per 1◦C effect on the rate of new cases in a given population, this translates

into very different levels of cases in different locations. If public health policies successfully

lower baseline COVID-19 case rates, changing temperatures will have a much smaller effect

on total cases than when baseline rates are high.
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Methods

Data

COVID-19 We use data on global daily new COVID-19 cases assembled by the Johns

Hopkins University Center for Systems Science and Engineering25 for the period between

January 22, 2020 to March 15, 2020.1 We aggregate daily new confirmed cases of COVID-19

to the country level, omitting observations from the Diamond Princess cruise ship (due to

uncertain temperature exposure of the passengers). Our main outcome variable is the total

daily new confirmed cases per 1 million people; we use country-level population in 2018 (the

most recent year available) from the World Bank’s World Development Indicators.2

Weather We use the ERA5 reanalysis product from European Centre for Medium-Range

Weather Forecasts (ECMWF), which provides daily gridded weather variables at the 0.25◦

latitude by 0.25◦ longitude resolution.263 Specifically, for January 22, 2020 to March 15,

2020, we collect daily mean 2-meter temperature (in degrees centigrade), total 2-meter pre-

cipitation (in mm), and mean 1000 hPA specific humidity (in kg/kg). 2-meter and 1000 hPA

roughly correspond to conditions near the earth’s surface.

We link gridded climate data to country-level COVID-19 cases by aggregating grid cell

information over country boundaries. To preserve any nonlinearities in the temperature-

COVID-19 relationship, we take nonlinear transformations of climate variables (e.g. second

order polynomials) at the grid cell level before averaging values across space. To capture

climatic conditions reflective of population exposure, we average across grid cells weighting

by the cross-sectional gridded distribution of population in 2011 from LandScan.27 For

example, the vector of country-level daily population-weighted average temperature variables

we use is computed as Tit = [
∑

z∈i ωgi(Tgt)
1,
∑

g∈i ωgi(Tgt)
2], where g indicates grid cell, i

indicates country, superscripts indicate polynomial powers, and ωgi is the share of country

i’s population that falls within grid cell g.

To estimate projected seasonal temperature conditions and their influence on COVID-19

transmission, we obtain daily gridded 2-meter temperature from ERA5, as described above,

over the last five years (2014-2018). Using the average seasonal conditions over the past five

years as a proxy for expected seasonal variation through 2020 and into early 2021 (see Fig.

S2), we compute monthly averages across all five years of daily temperatures at both grid

1Available at https://github.com/CSSEGISandData/COVID-19 and accessed via https://github.com/

RamiKrispin/coronavirus.
2Available at http://data.worldbank.org/data-catalog/world-development-indicators
3Available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/

reanalysis-era5-single-levels?tab=overview
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cell level (see Fig. 2A and C) and at country level (see Fig. 2B and D), in the latter case

using the same aggregation method described above.

Statistical model

We aim to examine whether temperature affects new confirmed cases of COVID-19. In

contrast, the goal of most epidemiological models is to explicitly characterize all factors con-

tributing to the transmission of a disease; this endeavor is exceptionally important to guide

understanding of disease progression and to forecast total case loads. However, identifying

the parameters within such complex models in a plausibly causal manner is difficult. This

study takes an econometric approach to isolate random variation in one potentially impor-

tant driver of transmission, temperature. Our reduced-form empirical approach is agnostic

regarding the mechanisms through which temperature influences case rates, but by provid-

ing causal estimates of the role that temperature plays in transmission, allows us to make

counterfactual simulations of future conditions under alternative temperature conditions.

Moreover, these estimates provide empirical grounding for parameterization of other, more

structured epidemiological modeling exercises.

There are two challenges to causal estimation in this setting. First, surface temperatures

generally fall as one moves away from the equator towards higher latitude locations. Because

similar latitude-dependent gradients exist for other potentially relevant environmental con-

ditions like UV exposure and socio-economic indicators like GDP, a cross-sectional analysis

of local mean temperature and COVID-19 transmission may be biased by such confounding

factors. Second, for a given location, surface temperatures tend to trend over the course

of a calendar year. COVID-19 transmission rates trend as well which may also confound

temperature effects with other gradually evolving determinants of transmission.

To address these challenges, we conduct a longitudinal (or panel) regression model using

daily confirmed COVID-19 cases from 134 countries from January 22, 2020 to March 15,

2020. Our outcome of interest is the total number of new confirmed COVID-19 cases per

capita between day t and t− 1 in country i, indicated by ∆yit.
4 Fig. S1 plots the uncondi-

tional distribution of ∆yit for our country-by-day sample, showing a strongly right-skewed

distribution with many zero observations. To address this property of the data, we employ

4 In the canonical S-I-R model of infectious disease transmission, our outcome corresponds to the daily
increase in new infected individuals per capita or the daily decrease in susceptible individuals per capita.
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the following Poisson regression model5

∆yit = exp(βTit + δ′Wit + θ′Zit) + εit (1)

where for country i and day t, Tit is population-weighted daily mean temperature (in degrees

centigrade). To examine nonlinearity in the relationship between new cases and tempera-

ture, in some specifications we also include a quadratic in temperature. Wit is a vector of

other weather controls, including population-weighted daily total precipitation (in mm) and

population-weighted daily specific humidity (in kg/kg). Zit is a vector of semi-parametric

controls designed to isolate random variation in weather conditions.29 In our baseline speci-

fication, Zit includes a full set of country-specific dummies, which remove any time-invariant

differences in COVID-19 transmission rates across countries. These spatial “fixed effects” ad-

dress the concern that baseline population characteristics (e.g. economic activity, population

density) may be correlated both with transmission and with average temperature. Second,

Zit includes day-specific dummies to remove any common global dynamics in COVID-19

transmission. These temporal fixed effects account for global trends or idiosyncratic shocks

in COVID-19 transmission as the disease spreads globally. Finally, in some specifications, Zit
also includes separate quadratic time trends for all countries lying within regularly spaced

latitudinal bands (ranging from 5◦ to 25◦ wide). These controls, which vary over space and

time, remove any potential seasonality in COVID-19 transmission rates that may differ by

distance to equator and be correlated with gradually changing seasonal population dynamics,

such as time spent outside or work and school schedules. Finally, standard Poisson models

impose that the first and second moments of the outcome be equal. To address this overdis-

persion issue, we cluster standard errors at the country level. This adjustment relaxes the

assumption of equal first and second moments by allowing arbitrary forms of within-county

heteroskedasticity and serial correlation in the error term εit.
30

To conduct our seasonal temperature projections, for each country i, we calculate

∆̂yi,Mar+τ = exp(β̂[T̂τ − T̂Mar]) (2)

where β̂ is our estimate from equation (1) (projection values are calculated using the results

shown in col. 5 of Table S1). In this calculation T̂Mar is our constructed estimate of seasonal

5 The main advantage of the Poisson model is that it can accommodate skewed outcome distributions
unlike an ordinary least squares model. And unlike log-linear models, it does not drop observations when
the outcome variable is zero. The Poisson model has the additional benefit of being a member of the linear
exponential family such that even if the outcome variable is not generated by a Poisson process, one can still
obtain consistent point estimates through quasi-maximum-likelihood provided that the conditional mean
function (i.e., exp(βTit + δ′Wit + θ′Zit) is correctly specified.28
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daily temperature during March, computed as the average daily population-weighted March

temperature between 2014-2018. T̂τ is the seasonal daily temperature during any other

month τ , also defined as the average daily population-weighted temperature for month τ

between 2014-2018. In Fig. 2, we show results for τ = July (the hottest month on average

across the Northern Hemisphere), and τ = January (the coldest month on average across

the Northern Hemisphere). The estimated impacts, ∆̂yi,Mar+τ represent the percent change

in new COVID-19 cases between March 2020 and future month τ , holding all else equal. As

described in the main text, these are proportional projections, underscoring the importance

of assessing temperature’s influence on COVID-19 alongside the many other factors that

determine the baseline case rate at a given location and time.
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Figures

Figure 1: Empirical estimates of a global COVID-19 and local temperature relationship
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population. Our benchmark specification is indicated by the solid red line (col. 5, Table S1), representing
a 13% decline in the case rate per 1◦C increase in temperature, with a 95% confidence interval of [-21%,
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Figure 3: Time series of projected new COVID-2019 cases due to changes in temperature
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Pr
oj

ec
te

d 
%

 c
ha

ng
e 

in
 n

ew
 C

O
VI

D
-1

9 
ca

se
s

-100

0

100

200

300

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Month

Northern Hemisphere

Southern Hemisphere

Each thin line shows a country’s projected percent change in new COVID-2019 cases per 1 million people due
to changes in temperature between March 2020 and the subsequent 11 months. Projections are generated
under mean estimates of the linear temperature-COVID-2019 effect, exp[β̂( ˆTJul − T̂Mar)] − 1, where β̂ is
from equation (1) and T̂τ represents expected monthly temperature for month τ . These estimates reflect
elevated or depressed transmission risk due only to temperature changes. Southern Hemisphere countries
are in blue; Northern Hemisphere countries are in orange. Thick lines indicate average projected percent
change across countries in each hemisphere.
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Appendix Figures

Figure S1: Distribution of sample new COVID-19 cases per 1 million
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Figure shows the distribution of new COVID-19 cases per 1 million across country-by-day observations in
our estimating sample.
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Appendix Tables

Table S1: Empirical estimation of the temperature-COVID-19 relationship

(1) (2) (3) (4) (5) (6) (7)

Temperature -0.141*** -0.121*** -0.111* -0.142*** -0.129*** -0.127** -0.083*
(0.040) (0.043) (0.057) (0.040) (0.043) (0.059) (0.050)

Temperature squared -0.001 -0.000
(0.003) (0.002)

Precipitation -0.012 -0.013 -0.023 -0.023 0.002
(0.017) (0.018) (0.017) (0.017) (0.014)

Specific humidity -37.747 -36.518 -13.998 -13.945 -73.164
(111.012) (113.147) (105.914) (106.520) (102.965)

Observations 7236 7236 7236 7236 7236 7236 7236
Countries 134 134 134 134 134 134 134
Days 54 54 54 54 54 54 54
Weather controls No Yes Yes No Yes Yes Yes
Lat. bin trends No No No Quad Quad Quad Quad
Lat. bin width - - - 25◦ 25◦ 25◦ 5◦

Notes: Estimates of Poisson regression model from equation (1) using country-by-day longitudinal data.
Outcome is new COVID-19 cases per 1 million population. All models include country and day fixed
effects. Column 1 includes linear temperature (in degrees C). Column 2 adds precipitation (in mm) and
specific humidity (in kg/kg). Column 3 adds quadratic temperature. Columns 4-6 replicates columns 1-3
but adds separate quadratic time trends for groups of countries within the same 25◦ latitude bin. Column
7 replicates column 5 but uses a narrower 5◦ latitude bin. Standard errors clustered at the country-level
in parentheses. P-values from two-sided t-tests with *** p<0.01, ** p<0.05, * p<0.1.
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